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Figure 6. Schematic representation of the triplet cyclopropylidene (3) 
—* allene (6) interconversion and the isomerization of 6 by in-plane (6 
-* [12] -» 6) and by rotation (6 - • [13] -* 6). Best estimated relative 
energies (kj mol"1): stable structures (•); transition structures (+). 

6), it cannot lie on the lowest energy path from 14 to 6. Rather, 
at some point between 14 and 6 before 12 is reached, torsion at 
one or both methylene groups must set in. It is of interest to note 
that if only one of the methylene groups rotates through 90° then 
14 would convert to 13. As 13 itself is a transition structure for 
geometric isomerization of 6, it also cannot lie on the reaction 
coordinate 3 —• [14] —»-6. As a consequence, each of the 
methylene groups must ultimately rotate through an angle of 90° 
but in an unsymmetrical fashion. By allowing the geometry to 
relax without symmetry constraints from 14 to 6, it is apparent 
that the single most important factor is the relaxation of the 
C1C2C3 angle. As a consequence, the C1C2C3 bond system be­
comes almost linear (close to structure 12) before rotation and 
rebending allow the equilibrium geometry 6 to be attained. 

The preceding description of the conversion 3 —• 6 is sub­
stantially different from that found by Pasto and co-workers," 
who may have restricted their investigation to structures with Cs 

symmetry. Although they guessed that the C1C2C3 angle of their 
transition structure was close to 88°, the value found for 14, they 
found a rapid disrotatory motion around the transition structure 
to give a nonplanar structure followed by gradual flattening of 
the methylene group while ring opening continued to 6. Their 
estimated barrier at the 4-3IG level, 80 kJ mol"1, is somewhat 
higher than that found in this investigation at the 3-21G level, 
64 kJ mol-1, or at the 6-31G level, 69 kJ mol"1. Our best estimate 
for the barrier after inclusion of polarization functions and cor­
rection for changes in correlation energies and zero-point vibra­
tional energies is 99 kJ mol"1. Thus the conversion of cyclo­
propylidene to allene on the triplet potential energy surface is 
substantially more hindered than that on the singlet surface, the 
latter barrier being 48 kJ mol"1. 

Concluding Remarks 
Ab initio calculations with gradient techniques and inclusion 

of correlation have revealed the detailed mechanisms of the cy­
clopropylidene -* allene conversion on both the singlet and triplet 
potential energy surfaces. The singlet reaction has an activation 
energy of 48 kJ mol"1. The reaction coordinate branches prior 
to passage over chiral and enantiotopic transition structures. 
Elucidation of the transition structures (10 and 10') has enabled 
a rationale to be presented for the high degree of stereoselectivity 
on the basis of steric factors observed for the conversion of 
anti-substituted cyclopropylidenes to allenes, and for the very low 
degree of stereoselectivity observed in the case of syn substitution. 
The analogous reaction of triplet cyclopropylidene is hindered by 
a higher barrier, 99 kJ mol"1. Here the transition structure (14) 
is reached by means of a nonrotatory but unsymmetrical rupture 
of the bond opposite to the carbene site. 

Registry No. Cyclopropylidene, 2143-70-6; allene, 463-49-0. 
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Abstract: Solvent effects on the methylamine-acetic acid complex are studied by embedding the molecule in a spheroidally 
shaped cavity and employing the generalized Born equation. The solvent effect is found to stabilize the zwitterion but not 
enough to make it more stable than the neutral complex. 

I. Introduction 
Lack of agreement between gas-phase calculations and ex­

perimental solution data is probably due to the solute-solvent 
interaction. For a charged solute in a polar solvent the Born 
equation1 approximates this interaction by placing the solute 
molecule in a spherical solvent cavity. The ion is idealized as a 
point particle at the center of a sphere. The solvent is treated 
as a continuum whose electrical properties are embodied in its 
dielectric constant, t. The electrostatic hydration energy is then 
given by 
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where Q is the solute's net charge and a is the radius of the 
spherical cavity. This formula has been applied to numerous 
problems of practical interest in the literature.2 Two sources of 
error in this expression are first that the solute molecule, in reality, 
consits of a distribution of charge corresponding to the distorted 
atomic charge clouds positioned around the atomic locations in 

(1) Born, M. Phys. Z. 1920, 1, 45. 
(2) See, for example: Aue, B. H.; Webb, H. M.; Bowers, M. T. J. Am. 

Chem.Soc. 1976,9«, 318. 
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space and second that many molecules or molecular complexes 
are not spherical and as such should not be necessarily put in a 
spherical solvent cavity. 

The first of these difficulties has been addressed by numerous 
authors3 over the years. In our previous work4 we approximated 
the molecular charge distribution by calculating the Mulliken 
charge population on atoms in the framework of the Hartree-Fock 
approximation using Gaussian basis sets. The resulting set of 
discrete charges was then put inside a spherical cavity. Then, 
following a simple procedure,4 we expanded the interaction energy 
in an infinite series of Legendre polynomials which describe the 
monopole, dipole, quadrupole, octupole, and higher poles effects 
and used 

1 - ( « + 0(1 - 0 H » ( r/*)" 
2 „=0 n + (« + l)e j=i *.i a2"+1 

where Qj denotes the net charge on the jth atom, N is the total 
number of atoms, and r, locates the yth atom in space. This 
method, applied to the determination of the basicity of a series 
of amines4 as well as to other systems such as the OH" solvation 
in water and the Lithium affinities of some bases,5 leads to an 
improved agreement with experiment as well as to a better un­
derstanding of the phenomena involved. 

In this work, we address ourselves to the second aforementioned 
approximation. Indeed, many systems are far from spherical: 
some are planar, in many cases fitting better inside an oblate 
spheroidal cavity; some are quasilinear, fitting better inside a 
prolate spheroidal cavity. The problem of solvation energy of a 
distribution of charge in spheroidal and ellipsoidal cavities has 
been studied by several research groups.6 The example treated 
in this work is the methylamine-acetic acid complex. In a previous 
work one of the authors and co-worker7 studied, using quantum 
mechanical Hartree-Fock calculation, some amino acid-amino 
acid interactions, modeled by guanidium (for arginine) and me-
thylamine (for lysine) hydrogen bonded to a formate ion or an 
acetate ion as a model for the carboxyl groups on amino acid 
residues. The questions answered for gas-phase calculations in 
that work were primarily if the zwitterion complex is more stable 
than the neutral-neutral species complex or vice versa and secondly 
if there is a barrier to the proton transfer from one species to the 
other. Such data are relevant for a series of biochemical problems, 
some at the molecular level of vision and some for enzymatic 
reactions. It was found that while the guanidinum formate ion 
complex is a zwitterion, the methylamine-acetic acid complex is 
neutral. These results are significant for hydrophobic pockets in 
enzymes. However, in aqueous media the water-complex in­
teraction could reverse the conclusion arrived at in the gas phase. 
Consequently, the water interaction is described by placing the 
methylamine-acetic acid as zwitterion and as neutral-neutral 
species in a nonspherical cavity and the energy is calculated. Note 
that if the simple Born equation given by eq 1 were to be applied, 
the interaction would vanish since there is no net charge in either 
complex. Our calculation takes into account all higher-order pole 
effects as well as the physical shape of the molecule. 

II. Theory 
In order to describe precisely how the calculation is performed, 

let us briefly review the theory.6 Let the molecule be composed 
of N point charges Qj located at the positions r, inside a spheroidal 
cavity in the solvent. The semimajor and semiminor axes of the 

(3) Kirkwood, J. G. J. Chem. Phys. 1934, 2, 351, 713. Onsager, L. J. Am. 
Chem. Soc. 1936, 58, 1486. Dogonadze, R. R.; Kornyshev, A. A. Phys. Status 
Solidi B 1972, 53, 439; 1973, 55, 843. Dogonadze, R. R.; Kornyshev, A. A. 
J. Chem. Soc, Faraday Trans. 2 1974, 70, 1121. Friedman, H. L. MoI. Phys. 
1975, 29, 1533. Schmidt, P. P. / . Chem. Soc, Faraday Trans. 2 1978, 74, 
703. For a recent review see: Tapia, O. In "Molecular Interactions"; Ra-
tajczak, H„ Orville-Thomas, W. J., Eds.; Wiley: New York, 1982; p 47. 

(4) Gersten, J. I.; Sapse, A. M. J. Phys. Chem. 1981, 85, 3407. 
(5) Gersten, J. I. Sapse, A. M. J. Comput. Chem., in press. 
(6) Harrison, S. W.; Nolte, H. J.; Beveridge, D. L. J. Phys. Chem. 1976, 

80, 2580. Felder, C. E. / . Chem. Phys. 1981, 75, 4679. Rinaldi, D.; Ruiz-
Lopez, M. F.; Rivail, J. L. / . Chem. Phys. 1983, 78, 834. 

(7) Sapse, A. M.; Russell, C. S., to be published. 

cavity will be denoted by a and b, respectively, and let / = {a1 

- b1)1!1 and £0 = a/f. One wishes to calculate the strength of the 
electrostatic interaction between the molecule and the solvent. The 
solvent is characterized as a dielectric liquid with static dielectric 
constant t. 

The interaction energy is obtained from the expression 

U=0/2)JLQj9j (3) 

where <&, is the potential at the position of they'th ion due to the 
other ions and the induced charge on the surface of the cavity. 
$, may be determined by solving the Poisson equation and 
matching boundary conditions on the surface. The result is6 

1 T 1 1 " " Fnm 

U = - - - 1 L E — [(Y,/")2 + K m ) 2 ] (4) 
2 L « J n=o m-o A„m 

Here y„m and <j„m are generalized multipole moments defined by 

yn
m = £ QjPnm(Zj)Pnm(rij) cos m4>j (5a) 

°nm = Z QjP»m($j)P„m(nj) sin m<t>j (5b) 

where £,, rjj, 4>j are the prolate spheroidal coordinates of the ;'th 
ion, and 

1 r (« -w) ! l 2 

^"•7 [ 2 - ' - o l H " ( 2 , , + 1)l(^oiJ (6) 

and 

" &"(&>) e [&"(&)] ' 

Here p„m(£0)
 a n d fi»m(£o) a r e associated Legendre functions of 

the first and second kind, respectively. 
In evaluating the electrostatic energy some care must go into 

selecting the cavity dimensions into which the molecule will fit. 
Our procedure was as follows. We randomly selected values for 
the semimajor and semiminor axes a and b as well as the Euler 
angles defining the orientation of the cavity relative to the molecule 
and the position coordinates of the center of the cavity. If the 
molecule fit inside the cavity, the cavity was deemed an acceptable 
candidate for consideration. A search was made for the cavity 
with minimum surface area which would enclose the molecule. 
The reason for wanting minimum area is that this would minimize 
the surface energy associated with the cavity formation. The walls 
of the cavity were kept a van der Waals radius away from the 
ions of the molecule in order to account for the steric repulsion 
of the atoms. Comparing eq 4 and 2 we see that the result for 
the spheroidal cavity is complicated by the fact that a summation 
over contributions from the individual azimuthal indices "m" is 
required. This is as expected, since the rotational symmetry of 
the spherical cavity has now been degraded to an axial symmetry 
of the spheroidal cavity. Another way of stating this is that now 
the energy of interaction depends sensitively on the orientation 
of the molecule relative to the axis of the cavity. 

In this paper we will focus our attention primarily on a prolate 
spheroidal cavity. The case of an oblate spheroidal cavity may 
be obtained from this case by noting that the parameters £0 and 
/become imaginary numbers if b > a. The same formulas that 
were derived are applicable, one need only continue them into the 
complex plane. 

The charges on the atoms were obtained from Mulliken pop­
ulation calculations with the 6-3IG* basis set,8 as implemented 
by the GAUSSIAN SO program.9 

(8) Hariharm, B. C; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. 
(9) Brinkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; DeFrees, 

D. J.; Schlegel, H. B.; Topiol, S.; Kahn, L. R.; Pople, J. A. GAUSSIAN 80, 
Department of Chemistry, Carnegie-Mellon University, Pittsburgh, PA 
15213. 
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Table I. Electrostatic Energies for Methylamine-Acetic Acid 
Zwitterion (A) and Neutral-Neutral Species (B), for a Cavity with a 
= 5.43 A and b = 4.22 A 

N 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

U(A) (kcal/mol) 

-5.67 
-7.47 
-9.04 
-9.27 
-9.29 
-9.31 
-9.33 
-9.36 
-9.36 
-9.36 
-9.36 

U(B) (kcal/mol) 

-0.76 
-2.07 
-2.21 
-2.31 
-2.33 
-2.37 
-2.40 
-2.42 
-2.44 
-2.44 
-2.44 

Table II. Electron Populations and Coordinates for the Two 
Molecules 

J Qj XJ (A) YJ (A) ZJ(K) 

Zwitterion (A) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

7.85 
0.52 
0.52 
6.37 
0.75 
0.79 
0.79 
0.58 
5.26 
8.75 
8.74 
6.54 
0.84 
0.86 
0.84 

0 
0 
0.97 

-0.66 
-0.13 
-0.67 
-1.69 
-0.40 

2.50 
1.53 
2.67 
3.89 
4.43 
3.78 
4.43 

0 
0 
0 
1.22 
2.10 
1.23 
1.26 

-0.87 
0 
0 
0 
0 
0.89 
0 

-0.89 

0 
1.01 

-0.30 
-0.49 
-0.13 
-1.57 
-0.13 
-0.30 

1.45 
2.19 
0.24 
2.10 
1.79 
3.18 
1.79 

Neutral-Neutral Species (B) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

7.94 
0.59 
6.28 
0.82 
0.83 
0.85 
0.66 
5.25 
8.58 
8.75 
6.56 
0.81 
0.80 
0.81 
0.47 

0 
0 

-0.97 
-0.73 
-0.93 
-1.97 
-0.33 

2.41 
1.34 
2.70 
3.65 
4.25 
3.35 
4.25 
1.85 

0 
0 
0.95 
1.96 
0.92 
0.70 

-0.93 
0 
0 
0 
0 

88 
0 

-0.88 
0 

0 
1.00 

-0.56 
-0.23 
-1.64 
-0.23 
-0.19 

2.04 
2.54 
0.73 
2.93 
2.73 
3.97 
2.73 
0.27 

III. Results 
In Table I we compare the electrostatic energy of the methy-

lamine-acetic acid zwitterion (A) and neutral-neutral complex 
(B) for a cavity with a = 5.43 A and b = 4.22 A. Values of U 
are given for various values of N, the largest value of N appearing 
in a truncated version of eq 4, in order to show the convergence. 
We note that significant contributions come from the first four 
multipoles. A table of ionic charges and coordinates for these 

Table III. Electrostatic Energies for Zwitterion (A) and 
Neutral-Neutral Species (B), for a Cavity with a = 4.43 A and b = 
3.21 A 

/V 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

f7(A) (kcal/mol) 

-11.57 
-17.77 
-24.57 
-26.25 
-26.83 
-27.22 
-27.87 
-28.14 
-28.37 
-28.49 
-28.54 

U(B) (kcal/mol) 

-1.64 
-6.04 
-6.75 
-7.19 
-7.61 
-8.44 
-9.54 

-10.40 
-11.64 
-12.17 
-12.95 

molecules is given in Table II. Note that the zwitterion, which 
has more charge separation than the neutral-neutral complex, 
also has the stronger electrostatic interaction with the cavity. 

This conclusion remains unchanged if the dimensions of the 
cavity are changed. In Table III we repeat the results of Table 
I but for a = 4.43 A and 6 = 3.21 A. Two facts are to be noted 
for this smaller cavity. The first is that the size of the electrostatic 
interaction is larger than it was in Table I. The other is that the 
contributions from the higher order multipoles are more significant 
and hence the convergence of the summation is slower. The result 
that the molecule with the greater charge separation has the 
greater interaction, however, remains the same. 

In this paper we have considered two molecules, the zwitterion 
and the neutral-neutral complex associated with the methyl-
amine-acetic acid complex. This case was somewhat special in 
that the size and shape of the cavity was identical for both 
molecules. In a more general situation we might be comparing 
molecular conformations for which the sizes and shapes were 
different. As long as both molecules could be encapsulated in a 
spheroidal cavity the present theory would be applicable. However, 
in discussing the energetics of the problem one must then take 
into account the surface energy of the cavity, which is the energy 
per unit area, <rs, multiplied by the surface area. Thus the surface 
energy is 

R, = 2™s(/?0
2 - I)102IsIn-' (1/fo) + {„-»(1 - ^2Y'2] (8) 

For a sphere whose radius is 4 A in water at 20 0C, this energy 
is roughly 21 kcal/mol. The difference in Us for two configurations 
can help stabilize one or another of the configurations, just as the 
Coulomb contribution to the solvation energy can. 

Examining the tables one notices that the zwitterion acquires 
in solution an extra Coulombic stability between 7 and 15 
kcal/mol. When these values are compared to the extra stability 
of the neutral-neutral complex in the gas phase, found to be 18.39 
kcal/mol at the 6-3IG* level of calculations, it is to be presumed 
that in solution the neutral-neutral complex will be as stable as 
the zwitterion. 
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